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Aging in models of nonlinear diffusion
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We show that for a class of problems described by the nonlinear diffusion equafiapt=D 5%/ 9x2¢” an
exact calculation of the two time autocorrelation function givdg,t’)=f(t—t')g(t’) (t>t’) exhibiting
normal and anomalous diffusions, as well as aging effects, depending on the valueanaf». We also
discuss the form in which the fluctuation-dissipation theorem is violated in this type of systems. Finally, we
argue that in this kind of model, aging may be a consequence of the nonconservation of the “total mass.”
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In a wide variety of physical systems, where some kind ofinformation-theoretic aspects of this case have been studied
diffusion takes place, it can be observed that the meanby Plastino and Plastinf8] and recently the interplay be-
squared displacement scales with time(a&(t))=t* with  tween dynamic and thermodynamic aspects have been stud-
« depending on the physical problem in questias=1 cor-  ied in[10] for the general case of diffusion M dimensions.
responds to the so-calletbrmal diffusion(the simple ran- The caseu=1 andv=3 has been studied by Spof#] and
dom walk, of which a complete statistical description can bedescribes a solid-on-solid model of surface growth.
obtained, for example, from the solution of the well known Restricting the situation to the one without drifor the
diffusion equation d/dtp(x,t)=D %/ Ix’$(x,t), where general case see Rd#]), the solution for the propagator
¢(x,t) is the probability that the diffusing particle be at po- ¢4(x,t) can be written as
sition x at timet provided it was at the origin=0 att=0
and D is the diffusion constant. lix#1 the diffusion is {1—B(1)(1—q)[x—xp (1) 72D
called anomalouswith «<<1 corresponding teubdiffusion bo(x,1)= Z, (1) . @
and «>1 to superdiffusior{1]. Anomalous diffusion can be a
a consequence, for example, of some kind of disorder in thith q=1+ x—» and xy,(t)=xy(0) is the mean position,
system[1,2], or more generically, of long-range correlations \yhich for a situation without drift is constant and equal to

in space-time. The computation of the propagafdx,t),  the initial position. This solution is closed by the relations
which contains all the spatiotemporal information of the sys-gatisfied byg(t) andZ,(t), namely,
tem, is in general a difficult task. Without knowing the exact a

propagator for all ti_mes, its Ipng-tim_e form can b_e cglculated B(t) [Z4(0) 2u
in some cases using techniques like renormalization group —= 3
and scaling argumen{s]. B(0) | Z4(1)
Recently Tsallis and Bukmdr@] have obtained thexact
solution of the nonlinear Fokker-Planck equation an
J J 9 2v(v+pu)DB(0)[Z(0)]?# | Vrtr
ST D= = —{FOLe( D +D gl d(x, D] Za()={[Zg(0)]* 7"+ PR t] :
() 4

where (u,v)eR? D>0 is a diffusion constant, A static form of Eq.(2) with B(t)=21/T (inverse tempera-
F(x)=—dV(x)/dx is an external force associated with the ture) and Zy(t)=2Z4(T) (partition functior) has been ob-
potential V(x), and ,t) is 1+1 space-time. They have tained from a maximum entropy principle in the context of a
found the solution for a drift of the fornfF(x)=k;—k,x  generalized thermstatisti¢$1], and successfully applied for
with k; andk, constants. This equation recovers the standaréxplaining, among many other problems, the thermodynamic
diffusion or Fokker-Planck equation when=v=1. Other  foundations of Lgy anomalous diffusiorj12,13. We will
values of (u,v) represent interesting physical systems assee in the following that the above solution presents a very
well: in the case witi=(x) =0 (a purely diffusive problemy  rich dynamical behavior characterized in general by anoma-
for u=1 and arbitraryv, Eq. (1) is known as theporous lous diffusion and, for certain values @f and v, by aging
medium equatiomnd models many nonequilibrium systems phenomena, the long-term memory effects observed and
in fluid dynamics[5], particle diffusion in magnetic fields nowadays extensively studied in amorphous polynjédg
[6], and gas dynamid¥’], depending on the value of The and spin glassegd5]. Let us consider the two-time autocor-
relation function
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f_ dx dy X ye(X,0,t") gy, x,t—t"), (6)

in which t’ <t and where¢(u,v,z—2") is the probability
that the particle was at positianat timez provided it was at
positionv at timez'. From Eq.(2) we obtain

C(t,t'>=Kq{zqa—t'>zq(t'>[ﬁ<t—t')]l’z[ﬂa')]y?}*l(,?)

with K, a constant that only depends gnNow considering
the regime in which—t’—« and alsot,t’ —«, from Egs.
(3), (4), and(7)

C(t,t,) :A[B(t_tr)](p,fl)/(p,+ V)[Btr](?:,ufl)/(pﬂr V)1 (8)

where
23 E a3
A_F 2" q——l‘zr(zf -1 2 1 1
B 1 B%(0) Z**(0)
gl
9)
and
=20 M) 5 0)72(0). (10
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FIG. 1. Qualitative shape of the propagatpg(x,t) for fixed
t. From top to bottong=-1,0,1,2,3.

For u# 1 the autocorrelation function depends explicitly
on both times, on all time scales, a feature characteristic of
systems with long term memory. These effectsaging are

This result presents a variety of interesting characteristicccommon in disordered systerfe.g., spin glasseésvhere the

First we note that fou=wv=1 we obtain the well known
result for normal diffusionC(t,t’)=2D min(t,t’). For the
case of the porous medium equation, i.u=1, the
asymptotic correlation simplifies to

C(t,t")=A[Bt']%1™»), (11

In this case the long-time behavior depends only on the min
mum time (as in normal diffusion but the diffusion is
anomalous with exponent 2/(1v). Whenv>1 the behav-
ior is subdiffusiveand for »<<1 it is superdiffusive This

gualitative change can be conveniently observed in the shape

of the propagator at a fixed timé, as shown in Fig. 1. In

the subdiffusive regime, characteristic of the porous medium

time correlations present particular scaling forfase[15]

and references thergirAging effects have also been studied
in models without an explicit disorder as scalar fields, the
XY model, and spinodal decompositigt6], and also in ran-
dom walks in disordered medja7,18. In order to compare
the present scalings with those found in spin glasses it is
jconvenient to normalize the correlation function in order to
have C(t,t)=1. This normalization is natural in magnetic
systems but it is not so for an arbitrary random walk. In our
problem a suitable definition may be

equation, the propagator presents a “wave front” that ex-

pands with time as
1 Zy(t)

= Fon D 20

with Z.(t) given by Eq.(4). As t—o it flattens as|X,|

12

«tY(1+7) The wave front changes to the exponential decay’

of the normal Gaussian diffusion when=1 and then to

superdiffusion characterized by power law tails in the propa-

gator that decays fox— + andt fixed as

d(x)oc|x|P~D ) p<. (13

Although the previous discussion considergd=1, it is

C(t,t")
Citt') = —. (14
JC(t,t)C(t',t")
With this definition we obtain
1\ Bu—1/[2(pt+v)]
C(t,t/)oe(t—t7) ) (T) , (19

whent,t’—o andt—t’'—oco. This normalized correlation
resents the commonly seen scaling wviitht. The breaking

of time translation invariance can be clearly seen in the so-
called displacement function

B(t,t")=([y(t)—x(t")]?

=C(t,H)+C(t',t")—2C(t,t").
17)

(16)

valid in the general case in which the different regimes areBy definition B(t,t)=0. Writing r=t—t’

more conveniently characterized by
g=1+up—v (g<1,1 and>1 corresponds to subdiffusive,
normal and superdiffusive behaviors, respectiyednd the
relation defines the possible choices forand v.

the parameter

B(tr+T,tr)octl(3ﬂ—l)/(,u,+v)+(tr+T)(3,u—l)/(,u+v)

_27.(/1*1)/(/HV)t/(S,u*l)/(/L+V)_ (18)
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We see that in gener&(t’ + 7,t’) depends on bott/ and  more complex as we go from the simple random walk, to the
7 and consequently time translation invariance is brokenporous medium equation and finally to arbitragy, ¢), and
Whenu=1 andr>t’ this is reflected in the structure of the functigit,t’).
, N 21t Finally and from another point of view, we argue that the
B(t'+7t")~r . (19) absence(presencg of aging phenomena is a direct conse-
guence of the “conservation of mas$8r nop in the system.

The displacement depends only on the time differenead For our model it can be verified thpd]

time translation invariance is recovered.

These results also reflect in the behavior of a suitable j dX g(x,1) = Zy(t)
generalization of the fluctuation-dissipation theor&rbT) R Z4(0)
for systems that may never attain equilibrium. This general-

ized form, firstly introduced for studying the off-equilibrium ?nn:ss?’oirslsi(ra\(dqgggtr:)c/jeﬁeofq?raﬁ oﬂlyt?ie— gisgisb;tjiggegtre;t&t/al
dynamics of spin glass¢49], states that Goldendfeld for the case of the normal diffusion, the conser-

, , L, IC(L,t") vation of mass is directly connected with the fact that asymp-
R(Lt)=Bo(t—t)X(t,1 )T- (20 totically the system loses memory of its history and becomes
unable to distinguish between different initial conditions.
whereR(t,t") is the response at timeto an external force The situation is completely different if the mass is not con-

u—1

fdx dq(x,0), (23

h applied at timet’ served, as, for example, in the modified porous medium
S(x(1)) equation[20] and in the problems we consider here when

R(t,t')= : , (21  m#1. Although we are not able to give a rigorous proof of

oh(t’) h=0 this assertion, the different situations studied here are in

. ] . ] agreement with it. Consequently, it would be a direct con-
B is the inverse temperature amfz) is the step function. npection between conservation of the mass and aging in the
The functionX(t,t') measures the departure from FDT; if ¢c|ass of systems considered: for our model equation, in the
FDT is satisfied therX(t,t")=1. In general FDT will be systems withu=1, the mass is conserved and the autocor-

mode_ls we are considering here,_ but it is, nevertheless, inx 1 there is no conservation of the mass and aging effects
structive to analyze how the functiofibehaves. If we apply gre seen.

an external perturbatioh at timet’, the form of the propa- Concluding, a number of interesting problems that can be
gator remains the same as in £8), but nowxy(t) satisfies  modeled by nonlinear diffusion equations can be solved ex-
the differential equation actly and the diffusion presents very different characteristics
d depending on the degree of nonlinearity. An exact calcula-
axM(t) =hs(t—t'), (22)  tion of the two-time correlation functions shows that, besides

the expected anomalous diffusion, some systems may exhibit

whose solution s, (t)=xy(0)+hé(t—t'). According to ag!ng effeptg as four_1d in many.other disordered systems. The
Eq. (21) the response function iB(t,t')=6(t—t'). Now, 2ding satlsf|e§ partlcular sc_allng_ fqrms, depending on the
for the case of the usual random waljk£ »v=1), an explicit Problem considered, which in principle could be compared
calculation from Eq(8) gives, for the correlation function, With éxperimental results. The different dynamical scenarios
C(t,t')=2Dt’. Noting that in the standard Fokker-Planck can be_char.act.erlz.ed also by studying (m_mlanon of the
equation B—1/D, we obtain from Eq. (20) that fluctuation-dissipation t.heor.em. These aging effects, in sys-
X(t,t')=1/2. Consequently, for the simple random walk, tems modeled by partial dlﬁerentlal equatlc‘)‘ns, seem t?, be
FDT is violated with a factoKX that is a constaritl6]. In the strongly relatEd to the conservation (.)f the “total mass.” It
case of the porous medium equatign1, arbitrary»), a would _be_ interesting to test the validitpr noY) of this hy-
similar analysis shows that(t,t')=f(t'), i.e., the correc- pothesis in other models and also to study the extensions of
tion factor is a function oft’ only. In the third case, for these results for dimensions higher than one.

arbitrary 4 and v the functionX depends explicitly on both I would like to thank Constantino Tsallis, Leticia F.
timest andt’. From this analysis it is clear that, although all Cugliandolo, and David S. Dean for very useful discussions
three cases violate FD(Bs expected the dynamics becomes and suggestions.
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