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Aging in models of nonlinear diffusion
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We show that for a class of problems described by the nonlinear diffusion equation]/]tfm5D]2/]x2fn an
exact calculation of the two time autocorrelation function givesC(t,t8)5 f (t2t8)g(t8) (t.t8) exhibiting
normal and anomalous diffusions, as well as aging effects, depending on the values ofm and n. We also
discuss the form in which the fluctuation-dissipation theorem is violated in this type of systems. Finally, we
argue that in this kind of model, aging may be a consequence of the nonconservation of the ‘‘total mass.’’
@S1063-651X~97!11802-5#

PACS number~s!: 05.60.1w, 47.55.Mh, 05.40.1j, 66.10.Cb
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In a wide variety of physical systems, where some kind
diffusion takes place, it can be observed that the me
squared displacement scales with time as^x2(t)&}ta with
a depending on the physical problem in question.a51 cor-
responds to the so-callednormal diffusion~the simple ran-
dom walk!, of which a complete statistical description can
obtained, for example, from the solution of the well know
diffusion equation ]/]tf(x,t)5D]2/]x2f(x,t), where
f(x,t) is the probability that the diffusing particle be at p
sition x at time t provided it was at the originx50 at t50
and D is the diffusion constant. IfaÞ1 the diffusion is
called anomalouswith a,1 corresponding tosubdiffusion
anda.1 to superdiffusion@1#. Anomalous diffusion can be
a consequence, for example, of some kind of disorder in
system@1,2#, or more generically, of long-range correlatio
in space-time. The computation of the propagatorf(x,t),
which contains all the spatiotemporal information of the s
tem, is in general a difficult task. Without knowing the exa
propagator for all times, its long-time form can be calcula
in some cases using techniques like renormalization gr
and scaling arguments@3#.

Recently Tsallis and Bukman@4# have obtained theexact
solution of the nonlinear Fokker-Planck equation

]

]t
f~x,t !m52

]

]x
$F~x!@f~x,t !#m%1D

]2

]x2
@f~x,t !#n,

~1!

where (m,n)PR2, D.0 is a diffusion constant
F(x)52dV(x)/dx is an external force associated with th
potential V(x), and (x,t) is 111 space-time. They hav
found the solution for a drift of the formF(x)5k12k2x
with k1 andk2 constants. This equation recovers the stand
diffusion or Fokker-Planck equation whenm5n51. Other
values of (m,n) represent interesting physical systems
well: in the case withF(x)50 ~a purely diffusive problem!,
for m51 and arbitraryn, Eq. ~1! is known as theporous
medium equationand models many nonequilibrium system
in fluid dynamics@5#, particle diffusion in magnetic fields
@6#, and gas dynamics@7#, depending on the value ofn. The
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information-theoretic aspects of this case have been stu
by Plastino and Plastino@8# and recently the interplay be
tween dynamic and thermodynamic aspects have been s
ied in @10# for the general case of diffusion inN dimensions.
The casem51 andn53 has been studied by Spohn@9# and
describes a solid-on-solid model of surface growth.

Restricting the situation to the one without drift~for the
general case see Ref.@4#!, the solution for the propagato
fq(x,t) can be written as

fq~x,t !5
$12b~ t !~12q!@x2xM~ t !#2%1/~12q!

Zq~ t !
, ~2!

with q511m2n and xM(t)5xM(0) is the mean position
which for a situation without drift is constant and equal
the initial position. This solution is closed by the relatio
satisfied byb(t) andZq(t), namely,

b~ t !

b~0!
5FZq~0!

Zq~ t !
G2m

~3!

and

Zq~ t !5H @Zq~0!#m1n1
2n~n1m!Db~0!@Zq~0!#2m

m
tJ 1/m1n

.

~4!

A static form of Eq.~2! with b(t)51/T ~inverse tempera-
ture! and Zq(t)5Zq(T) ~partition function! has been ob-
tained from a maximum entropy principle in the context o
generalized thermstatistics@11#, and successfully applied fo
explaining, among many other problems, the thermodyna
foundations of Le´vy anomalous diffusion@12,13#. We will
see in the following that the above solution presents a v
rich dynamical behavior characterized in general by anom
lous diffusion and, for certain values ofm andn, by aging
phenomena, the long-term memory effects observed
nowadays extensively studied in amorphous polymers@14#
and spin glasses@15#. Let us consider the two-time autoco
relation function

C~ t,t8![^y~ t !x~ t8!& ~5!
4806 © 1997 The American Physical Society
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5E
2`

`

dx dy x yfq~x,0,t8!fq~y,x,t2t8!, ~6!

in which t8,t and wherefq(u,v,z2z8) is the probability
that the particle was at positionu at timez provided it was at
positionv at timez8. From Eq.~2! we obtain

C~ t,t8!5Kq$Zq~ t2t8!Zq~ t8!@b~ t2t8!#1/2@b~ t8!#3/2%21,
~7!

with Kq a constant that only depends onq. Now considering
the regime in whicht2t8→` and alsot,t8→`, from Eqs.
~3!, ~4!, and~7!

C~ t,t8!5A@B~ t2t8!#~m21!/~m1n!@Bt8#~3m21!/~m1n!, ~8!

where

A5

GS 12DGS 1

q21
2
1

2DGS 32DGS 1

q21
2
3

2D
G2S 1

q21D ~q21!2

1

b2~0!

1

Z4m~0!

~9!

and

B52D
n~n1m!

m
b~0!Z2m~0!. ~10!

This result presents a variety of interesting characterist
First we note that form5n51 we obtain the well known
result for normal diffusionC(t,t8)52D min(t,t8). For the
case of the porous medium equation, i.e.,m51, the
asymptotic correlation simplifies to

C~ t,t8!5A@Bt8#2/~11n!. ~11!

In this case the long-time behavior depends only on the m
mum time ~as in normal diffusion! but the diffusion is
anomalous with exponent 2/(11n). Whenn.1 the behav-
ior is subdiffusiveand for n,1 it is superdiffusive. This
qualitative change can be conveniently observed in the sh
of the propagator at a fixed timet* , as shown in Fig. 1. In
the subdiffusive regime, characteristic of the porous med
equation, the propagator presents a ‘‘wave front’’ that e
pands with time as

uxwfu5
1

Ab~0!~n21!

Zq~ t !

Zq~0!
, ~12!

with Zq(t) given by Eq.~4!. As t→` it flattens asuxwfu
}t1/(11n). The wave front changes to the exponential dec
of the normal Gaussian diffusion whenn51 and then to
superdiffusion characterized by power law tails in the pro
gator that decays forx→6` and t fixed as

f~x!}uxu2/~n21!, n,1. ~13!

Although the previous discussion consideredm51, it is
valid in the general case in which the different regimes
more conveniently characterized by the parame
q511m2n (q,1,1 and.1 corresponds to subdiffusive
normal and superdiffusive behaviors, respectively!, and the
relation defines the possible choices form andn.
s.
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For mÞ1 the autocorrelation function depends explicit
on both times, on all time scales, a feature characteristic
systems with long term memory. These effects ofaging are
common in disordered systems~e.g., spin glasses! where the
time correlations present particular scaling forms~see@15#
and references therein!. Aging effects have also been studie
in models without an explicit disorder as scalar fields, t
XYmodel, and spinodal decomposition@16#, and also in ran-
dom walks in disordered media@17,18#. In order to compare
the present scalings with those found in spin glasses
convenient to normalize the correlation function in order
haveC(t,t)51. This normalization is natural in magnet
systems but it is not so for an arbitrary random walk. In o
problem a suitable definition may be

Cn~ t,t8!5
C~ t,t8!

AC~ t,t !C~ t8,t8!
. ~14!

With this definition we obtain

Cn~ t,t8!}~ t2t8!~m21!/~m1n! S t8t D ~3m21!/[2~m1n!]

, ~15!

when t,t8→` and t2t8→`. This normalized correlation
presents the commonly seen scaling witht8/t. The breaking
of time translation invariance can be clearly seen in the
called displacement function

B~ t,t8![^@y~ t !2x~ t8!#2& ~16!

5C~ t,t !1C~ t8,t8!22C~ t,t8!.
~17!

By definitionB(t,t)50. Writing t5t2t8

B~ t81t,t8!}t8~3m21!/~m1n!1~ t81t!~3m21!/~m1n!

22t~m21!/~m1n!t8~3m21!/~m1n!. ~18!

FIG. 1. Qualitative shape of the propagatorfq(x,t) for fixed
t. From top to bottomq521,0,1,2,3.
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We see that in generalB(t81t,t8) depends on botht8 and
t and consequently time translation invariance is brok
Whenm51 andt@t8

B~ t81t,t8!'t2/~11n!. ~19!

The displacement depends only on the time differencet and
time translation invariance is recovered.

These results also reflect in the behavior of a suita
generalization of the fluctuation-dissipation theorem~FDT!
for systems that may never attain equilibrium. This gene
ized form, firstly introduced for studying the off-equilibrium
dynamics of spin glasses@19#, states that

R~ t,t8!5bu~ t2t8!X~ t,t8!
]C~ t,t8!

]t8
. ~20!

whereR(t,t8) is the response at timet to an external force
h applied at timet8

R~ t,t8!5
d^x~ t !&
dh~ t8!

U
h50

, ~21!

b is the inverse temperature andu(z) is the step function.
The functionX(t,t8) measures the departure from FDT;
FDT is satisfied thenX(t,t8)51. In general FDT will be
violated by a system that never reaches equilibrium, as in
models we are considering here, but it is, nevertheless
structive to analyze how the functionX behaves. If we apply
an external perturbationh at time t8, the form of the propa-
gator remains the same as in Eq.~2!, but nowxM(t) satisfies
the differential equation

d

dt
xM~ t !5hd~ t2t8!, ~22!

whose solution isxM(t)5xM(0)1hu(t2t8). According to
Eq. ~21! the response function isR(t,t8)5u(t2t8). Now,
for the case of the usual random walk (m5n51), an explicit
calculation from Eq.~8! gives, for the correlation function
C(t,t8)52Dt8. Noting that in the standard Fokker-Planc
equation b→1/D, we obtain from Eq. ~20! that
X(t,t8)51/2. Consequently, for the simple random wa
FDT is violated with a factorX that is a constant@16#. In the
case of the porous medium equation (m51, arbitraryn), a
similar analysis shows thatX(t,t8)5 f (t8), i.e., the correc-
tion factor is a function oft8 only. In the third case, for
arbitrarym andn the functionX depends explicitly on both
timest andt8. From this analysis it is clear that, although a
three cases violate FDT~as expected!, the dynamics become
or
.
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n-

,

more complex as we go from the simple random walk, to
porous medium equation and finally to arbitrary (m,n), and
this is reflected in the structure of the functionX(t,t8).

Finally and from another point of view, we argue that t
absence~presence! of aging phenomena is a direct cons
quence of the ‘‘conservation of mass’’~or not! in the system.
For our model it can be verified that@4#

E dx fq~x,t !5F Zq~ t !Zq~0!G
m21E dx fq~x,0!, ~23!

and consequently the norm of the distribution or ‘‘tot
mass’’ is independent of time only ifm51. As suggested by
Goldendfeld for the case of the normal diffusion, the cons
vation of mass is directly connected with the fact that asym
totically the system loses memory of its history and becom
unable to distinguish between different initial condition
The situation is completely different if the mass is not co
served, as, for example, in the modified porous medi
equation@20# and in the problems we consider here wh
mÞ1. Although we are not able to give a rigorous proof
this assertion, the different situations studied here are
agreement with it. Consequently, it would be a direct co
nection between conservation of the mass and aging in
class of systems considered: for our model equation, in
systems withm51, the mass is conserved and the autoc
relation function does not present aging behavior. But ifm
Þ1 there is no conservation of the mass and aging effe
are seen.

Concluding, a number of interesting problems that can
modeled by nonlinear diffusion equations can be solved
actly and the diffusion presents very different characteris
depending on the degree of nonlinearity. An exact calcu
tion of the two-time correlation functions shows that, besid
the expected anomalous diffusion, some systems may ex
aging effects as found in many other disordered systems.
aging satisfies particular scaling forms, depending on
problem considered, which in principle could be compar
with experimental results. The different dynamical scenar
can be characterized also by studying the~violation of! the
fluctuation-dissipation theorem. These aging effects, in s
tems modeled by partial differential equations, seem to
strongly related to the conservation of the ‘‘total mass.’’
would be interesting to test the validity~or not! of this hy-
pothesis in other models and also to study the extension
these results for dimensions higher than one.

I would like to thank Constantino Tsallis, Leticia F
Cugliandolo, and David S. Dean for very useful discussio
and suggestions.
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